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Abstract

This paper deals with the development of accurate one-step schemes for the numerical simulation of unsteady

compressible flows. Pursuing our work in Daru and Tenaud [V. Daru, C. Tenaud, Comput. Fluids 30 (2001) 89] where

third-order schemes were considered, we follow the Lax–Wendroff approach to develop high order TVD combined

time–space schemes by correcting the successive modified equations. In the scalar case, TVD schemes accurate up to

seventh order (OSTVD7) in time and space are obtained (in smooth regions and away from extrema). To avoid the

clipping and the loss of accuracy that is common to the TVD schemes near extrema, we develop monotonicity-

preserving (MP) conditions derived from Suresh and Huynh [A. Suresh, H.T. Huynh, J. Comput. Phys. 136 (1997) 83]

to locally relax the TVD limitation for this family of one-step schemes. Numerical results for long time integration in

the scalar case show that the MP one-step approach gives the best results compared to several multistage schemes,

including WENO schemes. The extension to systems and to the multidimensional case is done in a simplified way which

does not preserve the scalar order of accuracy. However we show that the resulting schemes have a very low level of

error. For validation, the present algorithm has been checked on several classical one-dimensional and multidimen-

sional test cases, including both viscous and inviscid flows: a moving shock wave interacting with a sine wave, the Lax

shock tube problem, the 2D inviscid double Mach reflection and the 2D viscous shock wave–vortex interaction. By

computing these various test cases, we demonstrate that very accurate results can be obtained by using the one-step MP

approach which is very competitive compared to multistage high order schemes.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In the high speed flow regime, many aerodynamic configurations involve interactions between shock

waves and turbulence such as, for instance, within air intakes where shock wave-turbulent boundary
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layer or shock wave-shear layer interactions occur. An accurate prediction of such interactions is of

importance in effective design of supersonic vehicles since they greatly affect the aerodynamic loads. At

the present time, it is commonly admitted that large Eddy simulation (LES) is a highly promising
technique for the prediction of complex shock wave turbulence interactions including large-scale flow

phenomena such as those encountered in engineering applications [8,12]. Recent CFD predictions of

shock wave turbulent boundary layer interactions is summarized in [12]. A review of the LES of com-

pressible flows can also be found in [16]. It is well known that, in the LES approach, the numerical

scheme must have low dissipation to minimize the interaction with the subgrid scale model. In the past,

high order accurate schemes, like spectral ([3,4,18]) or Pad�ee schemes ([14,17]), have been identified as

suitable tools for LES. Nevertheless, in the transonic and supersonic flow regimes when dealing with

flows involving shock waves, one must use a numerical scheme which can both represent small scale
structures with the minimum of numerical dissipation, and capture discontinuities with the robustness

that is common to Godunov-type methods. To achieve this dual objective, high order accurate shock

capturing schemes must be employed. However, as pointed out by Titarev and Toro [26], the design of

high order accurate numerical schemes for hyperbolic conservation laws is a formidable task since three

major difficulties have to be overcome: ensuring the conservation property, preserving the high order of

accuracy in both time and space and controlling the generation of the spurious oscillations in the vicinity

of discontinuities.

At present, the numerical methods generally employed can basically be divided into two approaches: a
coupled time and space (one-step) approach and separate time and space integrations. On the one hand, the

methods for which time and space are considered separately, are generally based on a multistage time

integration. The most recent highly accurate separate time–space methods use a Runge–Kutta type time

discretization. In each stage of the time integration, a high order spatial discretization equipped with a

shock capturing technique is applied ensuring non-oscillatory and conservation properties. As the spatial

support of the high order reconstruction is relatively large, the global stencil of a decoupled time–space

scheme is much larger than that of a coupled time–space approach for the same order of accuracy since the

space discretization is applied in each sub-step of the time integration. Following that approach, one does
not control the total truncation error of the scheme and the limiting process acts only on the space dis-

cretization while the time integration stays invariant. Moreover, it is not possible to reach very high order

of accuracy in time without introducing spurious oscillations. For instance, using a Runge–Kutta method,

the TVD property cannot be recovered for an accuracy greater than fifth order. To recover the TVD

property for the fourth and fifth order, one needs to solve adjoint problems during the sub-steps, which is

very expensive. On the other hand, the coupled time and space schemes are preferably developed on a Lax–

Wendroff type approach. The schemes constructed in this way use a minimum stencil. As will be shown, this

approach is also very attractive for controlling the total truncation error (at least in the scalar case), and
deriving optimal non-oscillatory conditions. However the extension to non-linear systems of equations is

not trivial, and the integration of source terms is delicate.

Whatever the approach (coupled or decoupled), an ad hoc discontinuity-capturing feature must be

employed to limit the spurious oscillations in the vicinity of the strong gradient regions. Among the shock

capturing techniques found in the literature, total variation diminishing (TVD) schemes are generally

considered to be well suited for the capture of shock waves but too diffusive in smooth regions, due to the

limitation of the accuracy to first order near extrema. More recent schemes like the ENO/WENO [10,20–23]

family are very accurate in smooth regions but show a diffusive behavior in the vicinity of discontinuities.
Also, these schemes are very expensive in terms of CPU time (for example the high order WENO schemes

turns out to be too costly to be used for grid convergence studies in several cases reported in [24]). A

WENO reconstruction was also used recently in the ADER approach by Titarev and Toro [26], together

with a coupled time–space integration. However, it is likely that the scheme might suffer from the same

drawbacks as the WENO schemes.
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Another successful approach has recently been developed in [25] to enlarge the TVD constraint for a

better representation near extrema. The development has been performed on a separate time and space

integration by using a high order polynomial fixed stencil reconstruction and Runge–Kutta time stepping.
The reconstructed values at the interfaces of the mesh cells are then limited such as to preserve both

monotonicity and high order accuracy. This is achieved by using local geometrical considerations to relax

the monotonicity constraints near extrema. This limiting strategy has then been extended to the WENO

family of schemes in [2], in order to avoid the oscillations which sometimes can develop with high order

WENO reconstructions. However, in some sense this negates the key ingredient of the WENO schemes,

which is the use of a variable stencil to obtain a non-oscillatory reconstruction.

In this paper, our aim is to show that, contrary to the commonly admitted opinion, very accurate and

efficient one-step schemes can be developed in the TVD framework. We retain the coupled time and space
approach and a fixed stencil to develop highly accurate numerical schemes that can be rendered TVD or

monotonicity preserving with control over the total truncation error. Being one-step, these schemes are very

efficient. Pursuing our work in [7] where third-order schemes were considered, we obtain higher order

schemes by correcting the error terms at the desired order in the equivalent equation. The implementation

of these schemes is very simple as the increase of accuracy can be obtained via a change of an ‘‘accuracy

function’’ applied to a classical second-order scheme. The schemes can then recover the TVD property by

applying a limitation on this specific function. In the scalar case, TVD schemes accurate up to the seventh

order in time and space are obtained in smooth regions and away from extrema. These schemes have
however a tendency to clip extrema, a drawback which is inherent in all TVD schemes. By highlighting the

geometric significance of the TVD constraints, we develop monotonicity-preserving (MP) conditions de-

rived from [25] to relax the TVD limitation near extrema for this family of one-step schemes. We thus

obtain very accurate non-oscillatory results. Comparisons are made in the scalar case with the Runge–

Kutta scheme developed in [25], which turn out in favor of the one-step approach. The latter has better

control over the total dissipation of the scheme, while a multistage approach controls only the spatial

dissipation. Moreover, the cost (in terms of CPU time) of the one-step scheme is much lower. In the 1D

scalar case, it appears that our one-step schemes are very similar to those proposed by Leonard [15] for
solving the advection equation, although the formulation and the method of construction are quite different

(Leonard uses high order characteristic interpolations). To our knowledge, this study has however re-

mained restricted to the 1D linear scalar case, and was not extended to flow computations. We also believe

that the TVD formulation that we use here is better adapted for generalizations to the case of non-linear

systems. Though the extensions to systems of equations and to multidimensions are not trivial when using a

coupled time and space integration, we propose an extension of the present scheme to the Euler and

Navier–Stokes equations, based on the classical Roe flux difference splitting and dimensional splitting. The

resulting schemes are only second-order accurate, but they are very economical in terms of CPU time and
their level of error is very low as shown by convergence studies, making them attractive for use in cases

where it is not possible to use very fine meshes (for example in LES calculations where all the length scales

are not fully resolved).

This study is limited to uniform cartesian meshes. The extension of the one-step schemes to general

curvilinear meshes can be done using a classical coordinate transformation. If the transformation is not

sufficiently smooth, the good properties of the schemes can of course deteriorate, but this is a problem

common to all approaches (for example the high order finite difference ENO/WENO schemes can apply

only to uniform or smoothly varying grids; multidimensional finite volume schemes do not share this
drawback but are very complicated and costly, see [5,23]). The dimensional splitting we use in the multi-

dimensional case is not applicable to unstructured meshes. This is indeed a disadvantage, but structured

meshes are still widely used for CFD studies.

The paper is organized as follows: in Section 2, we consider the scalar case. We construct the one-step

high order schemes, and derive the TVD andMP versions of these schemes. The multistage approach is also
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presented in the TVD context for comparison. We then extend the one-step scheme to the Euler and

Navier–Stokes equations in Section 3. In Section 4 convergence studies and numerical results for various

1D and 2D test cases are presented, demonstrating that very accurate results can be obtained by using the
one-step MP approach.
2. High order schemes: the scalar case

To present the numerical schemes we developed in this study, we first focus on the solution uðx; tÞ of the
linear scalar transport equation

ut þ f ðuÞx ¼ 0 ð1Þ
with f ðuÞ ¼ au, a being the velocity which is supposed to be constant. For simplicity, we will suppose in the

following that a > 0. The case a < 0 can however be treated by symmetry relative to each cell interface. In

view of the discretization of this equation, we will denote by dt and dx the time step and cell width, re-

spectively. unj will denote the numerical solution at time t ¼ t0 þ n � dt and position x ¼ x0 þ j � dx.
In the following, we present the development of the coupled time–space one-step schemes. In order to

draw a parallel with the one-step scheme and to also highlight the differences, the separate space-time

discretization will also be presented though this is a classical approach.

2.1. Development of high order one-step schemes

2.1.1. Unlimited schemes

The one-step approach is of the Lax–Wendroff type [13], i.e., the time Taylor series expansion is used to

express unþ1
j and the time derivatives are substituted with space derivatives using the exact equation. The

construction of such schemes can equivalently be obtained by correcting the successive error terms of the

modified equations to increase the order of accuracy of the schemes. In this way, we obtain high order
accurate schemes relative to both time and space. To begin, let us consider the Lax–Wendroff scheme:

unþ1
j ¼ unj �

dt
dx

ðF lw
jþ1=2 � F lw

j�1=2Þ; ð2Þ

where F lw
jþ1=2 is the numerical flux:

F lw
jþ1=2 ¼ f n

j þ ð1� mÞ
2

ðf n
jþ1 � f n

j Þ ð3Þ

and m is the CFL number m ¼ aðdt=dxÞ. The modified equation for this scheme reads:

ut þ f ðuÞx ¼ a
dx2

6
ðm2 � 1Þuxxx: ð4Þ

By subtracting from the Lax–Wendroff scheme an upwind term formed by discretizing the right-hand side

of (4), one obtains the classical third-order upwind-biased scheme with a numerical flux which can be

written:

F 3
jþ1=2 ¼ f n

j þ ð1� mÞ
2

f n
jþ1

�
� f n

j � 1þ m
3

ðf n
jþ1 � 2f n

j þ f n
j�1Þ
�
: ð5Þ

For convenience, this numerical flux can be recast in the following form:

F 3
jþ1=2 ¼ f n

j þ U3
jþ1=2

ð1� mÞ
2

ðf n
jþ1 � f n

j Þ ð6Þ
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with

U3
jþ1=2 ¼ 1� 1þ m

3
ð1� rjþ1=2Þ ð7Þ

and rjþ1=2 ¼ ðunj � unj�1Þ=ðunjþ1 � unj Þ. Thus, the third-order scheme is expressed in the usual form of a second-

order flux limiter scheme, and the U function plays the role of an accuracy function.

Following such successive corrections of the higher order error terms, one can construct schemes of

arbitrarily high o-th order of accuracy, whose numerical flux can be written in the generic form

F o
jþ1=2 ¼ f n

j þ Uo
jþ1=2

ð1� mÞ
2

ðf n
jþ1 � f n

j Þ ð8Þ

depending only on the function Uo
jþ1=2 which drives the o-th order of accuracy of the scheme.

For example, to construct the function U4, we derive the modified equation of the third-order scheme,

which reads:

ut þ f ðuÞx ¼ a
dx3

24
ðm2 � 1Þð2� mÞuxxxx ð9Þ

and substract from the scheme a term formed by discretizing the RHS of (9). In this way we obtain the

function U4 corresponding to a fourth-order (in time and space) scheme:

U4
jþ1=2 ¼ U3

jþ1=2 þ
1þ m
3

� m� 2

4
ð1� 2 rjþ1=2 þ rjþ1=2 rj�1=2Þ: ð10Þ

We have performed the successive derivations of the modified equations up to sixth order. We only give

here the functions U5, U6 and U7 corresponding to the fifth-, sixth- and seventh-order numerical schemes

obtained by correcting these modified equations:

U5
jþ1=2 ¼ U4

jþ1=2 �
1þ m
3

� m� 2

4
� m� 3

5
� 1

rjþ3=2

�
� 3þ 3 rjþ1=2 � rjþ1=2 rj�1=2

�
;

U6
jþ1=2 ¼ U5

jþ1=2 þ
1þ m
3

� m� 2

4
� m� 3

5
� mþ 2

6

� 1

rjþ3=2 rjþ5=2

�
� 4

rjþ3=2

þ 6� 4 rjþ1=2 þ rjþ1=2 rj�1=2

�
;

U7
jþ1=2 ¼ U6

jþ1=2 �
1þ m
3

� m� 2

4
� m� 3

5
� mþ 2

6
� mþ 3

7

� 1

rjþ3=2 rjþ5=2

�
� 5

rjþ3=2

þ 10� 10 rjþ1=2 þ 5 rjþ1=2 rj�1=2 � rjþ1=2 rj�1=2 rj�3=2

�
:

ð11Þ

Let us emphasize that the numerical schemes constructed in this way always have the same order of ac-
curacy in time and space. The most interesting functions are the odd ones because they correspond to

schemes having a dominant dissipative error (even derivative in the right-hand side of the modified

equation). The dispersive error being one-order lower, the corresponding schemes have a nearly symmetric

behavior.

Comparing the stencil of this scheme to the Runge–Kutta high order scheme described in the following

(Section 2.1.6), here we use a stencil of only eight points to get a seventh-order scheme relative to both

time and space. Also notice that this kind of scheme has the property, which seems desirable, of giving

the exact solution if the CFL number is equal to 1 (the schemes have a classical CFL stability condition
06 m6 1).
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2.1.2. TVD schemes

The general constraint for a one-step scheme to be TVD, following the criteria developed by Harten, is:

� 2

m
6Uj�1=2 � Ujþ1=2=rjþ1=2 6

2

1� m
: ð12Þ

If, as usual, U is set to zero for negative values of r, this leads to:

06Ujþ1=2 6
2

1� m ;

06Ujþ1=2 6
2rjþ1=2

m :

8<
: ð13Þ

The upper bound of these limits is

max 0;min
2

1� m
;Ujþ1=2;

2 rjþ1=2

m

� �� �
:

The most usual limiters use the most restrictive of these values under a CFL condition 06 m6 1, that is:

06Ujþ1=2 6 2;
06Ujþ1=2 6 2 rjþ1=2:

�
ð14Þ

In fact, there is no real necessity to restrict the constraints except in the case where a steady solution is

searched, which should be independent of the CFL number. In the general unsteady case, it is worth

keeping the original constraints. In such a way, it is possible to construct higher than second-order TVD

schemes. In [1], such a third-order TVD scheme was proposed. The limiter function was

U3-TVD ¼ max 0;min
2

1� m
;U3;

2 rjþ1=2

m

� �� �
: ð15Þ

This limiter was also used in [7] to compute a viscous flow in a shock tube.

The principle can naturally be extended to higher order schemes, using the U function described above.

As a general rule, a o-th order TVD scheme will be obtained by taking U as Uo-TVD, where

Uo-TVD ¼ max 0;min
2

1� m
;Uo;

2 rjþ1=2

m

� �� �
: ð16Þ

The resulting scheme will be o-th order accurate almost everywhere, except around extrema and discon-

tinuities where it becomes first-order accurate, as is the case for all TVD schemes. This is a serious
drawback that needs correction for our purpose.

2.1.3. Geometrical interpretation of the TVD conditions

We would like here to introduce an original geometrical interpretation of the TVD conditions previously

presented. This will establish the link between TVD schemes and the monotonicity preserving constraints

developed in [25]. Let us write the numerical flux of a one-step scheme as:

Fjþ1=2 ¼ f n
j þ Ujþ1=2

ð1� mÞ
2

ðf n
jþ1 � f n

j Þ ¼ f n
j þ cþðf n

jþ1 � f n
j Þ ð17Þ

with

cþ ¼ Ujþ1=2

ð1� mÞ
2

: ð18Þ
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The first TVD constraint 06Ujþ1=2 6 2=ð1� mÞ is equivalent to 06 cþ 6 1, so this amounts to saying that

the numerical flux Fjþ1=2 must belong to the interval ½f n
j ; f

n
jþ1�.

In regard to the second TVD constraint, let us now introduce the numerical flux defining an upper
limit:

f ul
j ¼ f n

j þ 1� m
m

ðf n
j � f n

j�1Þ ð19Þ

and rewrite the flux Fjþ1=2 as:

Fjþ1=2 ¼ f n
j þ Ujþ1=2

m
2 rjþ1=2

ðf ul
j � f n

j Þ ¼ f n
j þ c�ðf ul

j � f n
j Þ ð20Þ

with

c� ¼ Ujþ1=2

m
2 rjþ1=2

: ð21Þ

The second TVD constraint 06Ujþ1=2 6 ð2 rjþ1=2Þ=m amounts here to saying that the coefficient c� must

take values in between 0 and 1, i.e. the numerical flux Fjþ1=2 must belong to the interval ½f n
j ; f

ul
j �.

Finally the TVD conditions can be expressed by enforcing the interface numerical flux value Fjþ1=2 in the

intersection of the two intervals ½f n
j ; f

n
jþ1� and ½f n

j ; f
ul
j �. This shows that the TVD conditions are identical to

the first-order geometrical constraints derived in [25] for the multistage case.

2.1.4. Monotonicity-preserving schemes

We now would like to enlarge the intervals defined above in order to avoid the loss of accuracy near

extrema that is common to TVD schemes. To recover an accurate value of the numerical flux near an

extremum, the TVD constraint should not be activated. To this end, we here adapt the method derived in

[25] to be optimum for the one step schemes.

We note by ½f 1; f 2; . . . ; f k� the interval ½minðf 1; f 2; . . . ; f kÞ;maxðf 1; f 2; . . . ; f kÞ�. In [25], the first interval

½f n
j ; f

n
jþ1� is enlarged to ½f n

j ; f
n
jþ1; f

md
j �, where:

fmd
j ¼ 1

2
ðf n

j þ f n
jþ1Þ �

1

2
djþ1=2 ð22Þ

and the second interval ½f n
j ; f

ul
j � is enlarged to ½f n

j ; f
ul
j ; f lc

j � where:

f lc
j ¼ f n

j þ 1

2
ðf n

j � f n
j�1Þ þ

b
3
dj�1=2 ð23Þ

with djþ1=2 ¼ dMM
jþ1=2 ¼ minmodðdj; djþ1Þ and dj ¼ f n

jþ1 � 2f n
j þ f n

j�1 is a measurement of the local curvature of
the flux function (we work here directly with the fluxes, contrary to [25] where reconstructed values at the

interface are used). The coefficient b is a heuristic factor giving freedom for the value of the local curvature.

In order to satisfy the monotonocity preserving criteria, the numerical flux Fjþ1=2 must belong to the

intersection of the enlarged intervals ½f n
j ; f

n
jþ1; f

md
j � and ½f n

j ; f
ul
j ; f lc

j �. This provides room for the numerical

flux to maintain an accurate value.

In the context of our TVD flux limiter one step schemes, we follow the same procedure but rather use the

following value for f lc
j :

f lc
j ¼ f n

j þ 1

2
1

 
þ dj�1=2

f n
j � f n

j�1

!
ðf ul

j � f n
j Þ ¼ f n

j þ c�lcðf ul
j � f n

j Þ; ð24Þ
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where

c�lc ¼
1

2
1

 
þ dj�1=2

f n
j � f n

j�1

!
: ð25Þ

This choice for f lc
j is more natural as expressed in terms of f ul

j , and also suppresses the need for the co-

efficient b.
Let us also rewrite fmd

j in a similar form:

fmd
j ¼ f n

j þ cþmdðf n
jþ1 � f n

j Þ; ð26Þ

where

cþmd ¼
1

2
1

 
� djþ1=2

f n
jþ1 � f n

j

!
: ð27Þ

Now we can see that if 06 cþmd 6 1 and 06 c�lc 6 1, then fmd
j and f lc

j belong to the TVD intervals. Thus the

TVD conditions are not modified in this case. The first inequality 06 cþmd 6 1 gives:

06
1

2
1

 
� djþ1=2

f n
jþ1 � f n

j

!
6 1 ð28Þ

or equivalently:

djþ1=2

f n
jþ1 � f n

j

�����
�����6 1: ð29Þ

The second inequality 06 c�lc 6 1 gives:

06
1

2
1

 
þ dj�1=2

f n
j � f n

j�1

!
6 1 ð30Þ

or equivalently:

dj�1=2

f n
j � f n

j�1

�����
�����6 1: ð31Þ

This shows that the two inequalities are identical. Next let us show that the inequality (29) is always verified

in the case where the numerical values fjþl; l 2 f�1; 0; 1; 2g are monotone. Without loss of generality, we

can suppose increasing values. If dj and djþ1 have opposite signs, djþ1=2 is equal to zero and the conclusion is

trivial. Let us suppose that dj P 0 and djþ1 P 0. Eq. (29) can be developed as

min
f n
jþ2 � f n

jþ1

f n
jþ1 � f n

j

�����
 

� 1

�����; 1

����� �
f n
j � f n

j�1

f n
jþ1 � f n

j

�����
!
6 1: ð32Þ

If dj P 0, then f n
jþ1 � f n

j P f n
j � f n

j�1 P 0, implying that 06 1� ðf n
j � f n

j�1Þ=ðf n
jþ1 � f n

j Þ6 1. The case where

dj 6 0 and djþ1 6 0 is symmetrical. This shows that (29) is always verified for monotone numerical data. The

enlarged intervals being identical to the TVD intervals, the numerical scheme is MP.

To remain in the TVD framework, we also can express the MP conditions that the numerical flux Fjþ1=2

must belong to the intersection of the enlarged intervals ½f n
j ; f

n
jþ1; f

md
j � and ½f n

j ; f
ul
j ; f lc

j � directly as constraints
on U, namely:
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minð0;UmdÞ6U6 max
2

1� m
;Umd

� �
; ð33Þ

where

Umd
jþ1=2 ¼

2

1� m

� �
cþmd ¼

2

1� m

fmd
j � f n

j

f n
jþ1 � f n

j
ð34Þ

for the first condition, and

min 0;
2r
m
;Ulc

� �
6U6 max 0;

2r
m
;Ulc

� �
; ð35Þ

where

Ulc
jþ1=2 ¼

2 rjþ1=2

m

� �
c�lc ¼

2 rjþ1=2

m

f lc
j � f n

j

f ul
j � f n

j

ð36Þ

for the second condition.
Finally the MP constraint which preserves accuracy takes the form:

Uo-MP ¼ maxðUmin;minðUo;UmaxÞÞ; ð37Þ

where

Umin ¼ max minð0;UmdÞ;min 0;
2r
m
;Ulc

� �� �
ð38Þ

and

Umax ¼ min max
2

1� m
;Umd

� �
;max 0;

2r
m
;Ulc

� �� �
: ð39Þ

In practice, as was done in [25], the criteria is strengthened by choosing a different definition for the cur-

vature measurement djþ1=2, namely

djþ1=2 ¼ dM4
jþ1=2 ¼ minmodð4dj � djþ1; 4djþ1 � dj; dj; djþ1Þ: ð40Þ

This reduces the range of values left to Uo-MP in the case of a non-monotone discontinuity.

To conclude this section, let us remark that MP schemes are close to TVB (Total Variation Bounded)

schemes (see [19]) in the sense that the Total Variation of the numerical solution is allowed to increase for

an amount OðdxÞ in both cases. The essential difference is that MP schemes allow this increase only for non-

monotone data, and are TVD for monotone data such that the scheme is not oscillatory around discon-
tinuities. In the TVB case, the Total Variation is allowed to increase everywhere, and oscillations can

develop whose amplitude is controlled by an heuristic factor.

2.1.5. Extension to the non-linear case

In the non-linear scalar case, the one-step scheme can be extended in order to preserve the high order of

accuracy in both time and space, in the case where the flux function f depends only on u. We can show that

the Jacobian aðuÞ ¼ df =du verifies the same equation as the variable u, that is:

at þ aðuÞax ¼ 0: ð41Þ
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This is easily shown by deriving:

at þ aðuÞax ¼
da
du

ðut þ aðuÞuxÞ ¼ 0: ð42Þ

Following these equations, the time derivatives can then be replaced by the space derivatives in the Lax–

Wendroff procedure. For instance, let us write down the first through third derivatives in time by using

successive derivatives of the exact equation:

ut ¼ �fx;
utt ¼ ða fxÞx;
uttt ¼ ða fxÞxt ¼ ðat fx þ a ftxÞx;

¼ ðat fx � a ða fxÞxÞx;
¼ ððat þ a axÞfx � ða2 fxÞxÞx;
¼ �ða3 uxÞxx:

8>>>>>><
>>>>>>:

ð43Þ

Similarly, we can show that in general we get for the mth time derivative:

umt ¼ ðð�aÞm uxÞðm�1Þx: ð44Þ

Following this relation, the successive modified equation that we established in the linear case takes the

general form in the non-linear case:

ut þ f ðuÞx ¼
dxm�1

m!
xðmÞaðuÞuxð Þðm�1Þx; ð45Þ

where xðmÞ is a polynomial function of m ¼ aðuÞdt=dx. In this way, the only modification we have to include

in the expression of the high order terms is to include xðmÞ in the difference formulae. Let us illustrate the

present development on the third order flux (see (5) in the linear case), which then is in the non-linear case

written:

F 3
jþ1=2 ¼ f n

j þ
ð1� mÞjþ1=2

2
ðf n

jþ1 � f n
j Þ �

ð1� m2Þjþ1=2

6
ðf n

jþ1

 
� f n

j Þ �
ð1� m2Þj�1=2

6
ðf n

j � f n
j�1Þ
!
: ð46Þ

The flux is written for the case where aðuÞ > 0, but it is easily generalized by symmetry. The function U3
jþ1=2

becomes:

U3
jþ1=2 ¼ 1� 1

3

ð1� m2Þjþ1=2 f n
jþ1 � f n

j

� �
� ð1� m2Þj�1=2 f n

j � f n
j�1

� �
ð1� mÞjþ1=2 f n

jþ1 � f n
j

� � ð47Þ

or equivalently:

U3
jþ1=2 ¼ 1� 1

3

ð1� m2Þjþ1=2 � ð1� m2Þj�1=2 rjþ1=2

ð1� mÞjþ1=2

: ð48Þ

The present procedure can be pursued to achieve higher order schemes. In this way, the high order accuracy

of the schemes can be maintained in both time and space.

Following Harten�s general TVD necessary conditions, the TVD constraints should be expressed by:

Uo-TVD
jþ1=2 ¼ max 0;min

2 rjþ1=2

j mjþ1=2 j
� 1� j mj�1=2 j
1� j mjþ1=2 j

;Uo
jþ1=2;

2

1� j mjþ1=2 j

� �� �
: ð49Þ

Note that, in a similar way, the extension of the MP constraint is straightforward.
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2.1.6. Multistage TVD and MP schemes

In this approach (the so-called method of lines), the space and time discretizations are performed sep-

arately. The most widely used time integration schemes for unsteady computations are Runge–Kutta type
ODE solvers. Beside the classical Runge–Kutta solvers, Shu and Osher [22] have derived explicit Runge–

Kutta methods up to the fourth order which possess the desirable property of being TVD. Unfortunately,

only the second and third-order methods do not necessitate the use of the x-reversed operator (i.e. solving

ut � f ðuÞx ¼ 0). Their third-order TVD RK3 time integration is widely used. It is written:

u1 ¼ un þ dtLdxðunÞ;
u2 ¼ 3

4
un þ 1

4
u1 þ dt

4
Ldxðu1Þ;

unþ1 ¼ 1

3
un þ 2

3
u2 þ 2

3
dtLdxðu2Þ

8>>><
>>>:

ð50Þ

with Ldx being a discrete approximation of LðuÞ ¼ �f ðuÞx.
As this specific Runge–Kutta scheme is made up of repeated applications of a single stage scheme given

by ukþ1 ¼ uk þ dtLdxðukÞ, the scheme is completed once Ldx is chosen. Integrating the single stage scheme

over the cell ½xj�1=2; xjþ1=2�, this amounts to approximating the interface value of the flux f ðukðxjþ1=2ÞÞ. Let
Fjþ1=2 be the numerical flux approximating this interface flux (the reconstruction step). We will here briefly

recall and discuss several different approaches.

The widely used MUSCL reconstruction uses the local slope Djþ1=2 to express the interface value:

Fjþ1=2 ¼ fj þ
1

2
Djþ1=2: ð51Þ

Depending on the value given to Djþ1=2, different schemes can be obtained. A linear combination of fjþ1 � fj
and fj � fj�1 is classically used, giving a second or third-order space accuracy. To increase the order of

accuracy, one can use a larger stencil to express the slope. In [25] for example, the slope Djþ1=2 is chosen as:

Djþ1=2 ¼ ð2fj�2 � 13fj�1 � 13fj þ 27fjþ1 � 3fjþ2Þ=30; ð52Þ

which gives a spatially fifth-order scheme, or:

Djþ1=2 ¼ ð�3fj�3 þ 25fj�2 � 101fj�1 � 101fj þ 214fjþ1 � 38fjþ2 þ 4fjþ3Þ=210; ð53Þ

which gives a spatially seventh-order scheme. The fifth-order scheme uses a six point stencil per Runge–

Kutta sub-step, that gives a total stencil of sixteen points per time step. The seventh-order scheme uses an

eight point stencil per Runge–Kutta sub-step giving a total stencil of 22 points per time iteration.

Equivalently, as was done in the one-step case, the numerical flux can also be written in the different

form:

Fjþ1=2 ¼ fj þ
1

2
Wo

jþ1=2ðf n
jþ1 � f n

j Þ; ð54Þ

where, for example, the spatially fifth-order scheme corresponds to:

W5
jþ1=2 ¼ 2rj�1=2rjþ1=2

�
� 11rjþ1=2 þ 24� 3

rjþ3=2

��
30: ð55Þ

The slope Djþ1=2 becomes Djþ1=2 ¼ Wo
jþ1=2ðf n

jþ1 � f n
j Þ, and W is the accuracy function. The above recon-

struction methods use a fixed stencil. By contrast, the family of ENO–WENO schemes [10,20–23] is based

on the use of a variable stencil to perform the reconstruction, with the idea of selecting the stencil giving the

smoothest interpolation.
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To recover the TVD property for a multistage scheme, both the Runge–Kutta solver and each space-

discretized step of the Runge–Kutta solver are required to be TVD. As the Runge–Kutta scheme is made up

of repeated applications of the same single stage scheme, we only have to consider one stage. The corre-
sponding numerical flux was written above as:

Fjþ1=2 ¼ fj þ
1

2
Wjþ1=2ðf n

jþ1 � f n
j Þ: ð56Þ

The slope must then be limited in order to get a TVD scheme. This can be obtained by applying the TVD

constraints on the W function. We obtain:

06Wjþ1=2 6 2rjþ1=2

1� m
m

;

06Wjþ1=2 6 2:

(
ð57Þ

If one wants to keep the order of accuracy at least equal to 2, it is necessary that W ¼ 1 when rj�1
2
is equal

to 1. This implies that the CFL value must be restricted such as:

16 2
1� m
m

ð58Þ

giving the CFL condition

m6
2

3
: ð59Þ

The upper bound value of the limited W function is then:

WTVD ¼ max 0;min 2 rjþ1=2

1� m
m

;W; 2

� �� �
: ð60Þ

Let us remark that this condition is more restrictive than the one-step condition (16) for all values of m.
One can either use this formula, or fix the coefficient a ¼ ð1� mÞ=m to its minimum value. For example, for

CFL values lower than 0.5, we have amin ¼ 1 and one can take WTVD ¼ maxð0;minð2 rjþ1=2;W; 2ÞÞ which
allows all the classical (second-order accurate) limiters to be used to express WTVD.

In the followings, we will denote by WTVD
a the function

WTVD
a ¼ maxð0;minð2 a rjþ1=2;W; 2ÞÞ: ð61Þ

In order to obtain a TVD scheme at each step of the Runge–Kutta solver, m must then be restricted such

that m6 1=ð1þ aÞ.
These TVD conditions, identical to the non-relaxed geometrical conditions in [25], correspond to

cþ ¼ 1

2
Wjþ1=2 and c� ¼ 1

2
Wjþ1=2

1

rjþ1=2

m
1� m

in (18) and (21).
This shows that the MP conditions derived in [25] can be expressed as constraints acting on the W

function. The procedure is similar to the one followed in the one-step scheme by replacing the function U by

W, and must be performed for each stage of the Runge–Kutta scheme.
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3. Extension of the one-step scheme to the Euler and Navier–Stokes equations

3.1. One dimension

The Euler system for 1D gas dynamics is written:

ow
ot

þ of ðwÞ
ox

¼ 0; ð62Þ

where w ¼ ðq; qu; qEÞT is the vector of conservative variables, q being the density, u the velocity, E the total

energy linked to the pressure p by the perfect gas equation of state p ¼ ðc� 1ÞqðE � 1
2
u2Þ (the specific heat

ratio c is constant and equal to 1.4). The flux f ðwÞ is the vector ðqu; qu2 þ p; ðqE þ pÞuÞT.
In the following, we present the extension of the high order coupled time–space approach to the system

of equations, by using the Roe flux difference splitting. We then describe the extension of the related TVD

and MP constraints.

3.1.1. OSo scheme

The one-step scheme reads:

wnþ1
j ¼ wn

j �
dt
dx

ðFjþ1=2 � Fj�1=2Þ; ð63Þ

where wn
j is the local value of w in cell j at time t ¼ ndt and Fjþ1=2 is the numerical flux of the scheme which is

given by:

Fjþ1=2 ¼ F Roe
jþ1=2 þ

1

2

X3
k¼1

ðUo
kð1� j mk jÞd j fk j rkÞjþ1=2 ð64Þ

with the first-order Roe flux defined as follows:

F Roe
jþ1=2 ¼

1

2
ðfj þ fjþ1Þ �

1

2

X
k

ðd j fk j rkÞjþ1=2 ð65Þ

with

djfkj ¼ jkkjdak;

where d is the forward difference operator ðdziþ1=2 ¼ ziþ1 � ziÞ, kk and rk are the eigenvalues and right eigen-

vectors of theRoe-averaged jacobianmatrixA ¼ df =dw, dak is the kthRiemann invariant and mk ¼ ðdt=dxÞkk.
Let us mention that, for clarity, the superscript n has been omitted in the expression of the fluxes.

The most direct way to extend the high order one step scheme to the non-linear system case uses a classical

direct extension of the formula (11) with respect to each kth wave of the system, where m is replaced by j mk j
and rjþ1=2 is replaced by rsjþ1=2;k with s ¼ signðkkÞ. The ratio of the wave strengths rsjþ1=2;k is then defined as:

rsjþ1=2;k ¼
dak;j�sþ1=2

dak;jþ1=2

:

This is the simplest and cheapest way to extend the scheme, but the drawback is that the formal order of

accuracy in space is now only two, as we work in the eigenvector basis of the considered interface, i.e., we

locally linearize the equations. The order of accuracy in time is also no more than two in this way, as we do

not take into account the complicated non-linear terms that arise in the derivation of the modified equation

of the Lax–Wendroff scheme.
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Another way to extend the scheme would be to use the Cauchy–Kowalewski procedure for substituting

time derivatives by space derivatives in the derivation of the successive modified equations. This procedure,

described in [9], should allow the extension of the scheme to the non-linear system case while keeping the
same order of accuracy. However, the procedure is very complex, especially in the multidimensional case.

Also, the TVD (and MP as a consequence) conditions are not directly extensible in 2D, except if a time

splitting strategy is used. In view of these problems, we choose here to keep the level of complexity of the

scheme comparable to classical second-order TVD schemes. This point could be the subject of further

studies, but as we will show in the following we have obtained very good numerical results using this simple

method of extension.

3.1.2. OSTVDo scheme

The TVD constraints are written for each characteristic field as in the non-linear scalar case

Uo-TVD
jþ1=2;k ¼ max 0;min

2rsjþ1=2;k

j mjþ1=2;k j
1� j mj�sþ1=2;k j
1� j mjþ1=2;k j

;Uo
jþ1=2;k;

2

1� j mjþ1=2;k j

� �� �
: ð66Þ
3.1.3. OSMPo scheme

The monotonicity constraints are extended by rather working on the flux difference components:

dFjþ1=2;k ¼ Fjþ1=2;k � F Roe
jþ1=2;k ¼

1

2
Uo

jþ1=2;kð1� j mjþ1=2;k jÞd j fjþ1=2;k j : ð67Þ

We also express the values defining the monotonicity intervals as flux differences, following the work

previously performed on the scalar case:

df ul
jþ1=2;k ¼

rsjþ1=2;k

j mjþ1=2;k j
ð1� j mj�sþ1=2;k jÞd j fjþ1=2;k j; ð68Þ
dfmd
jþ1=2;k ¼

1

2
d j fjþ1=2;k j �

1

2
djþ1=2;k; ð69Þ
df lc
jþ1=2;k ¼

1

2
df ul

jþ1=2;k þ
1

2

1� j mj�sþ1=2;k j
j mjþ1=2;k j

dj�sþ1=2;k; ð70Þ

where djþ1=2;k is given by (40) with however:

dj;k ¼ kjþ1=2;kdajþ1=2;k � kj�1=2;kdaj�1=2;k: ð71Þ

Finally the values Umd
jþ1=2;k and Ulc

jþ1=2;k are given by:

Umd
jþ1=2;k ¼

2

1� j mjþ1=2;k j
dfmd

jþ1=2;k

d j fjþ1=2;k j

and

Ulc
jþ1=2;k ¼

2rsjþ1=2;k

j mjþ1=2;k j
1� j mj�sþ1=2;k j
1� j mjþ1=2;k j

df lc
jþ1=2;k

df ul
jþ1=2;k

:

This completes the extension to systems.
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3.2. Two dimensions

The treatment of the multidimensional case is straightforward in the case of separate time–space dis-
cretization, if treated dimension by dimension (see [25]). However, the MP conditions rely on TVD con-

ditions as we have shown in the preceding section. TVD conditions are not directly extensible in the

multidimensional case, and Locally Extremum Diminishing conditions should rather be considered, but

this would lead to additional stability restrictions. This implies that the direct extension of the MP con-

ditions does not guarantee that the resulting scheme will be non-oscillatory.

Following the one-step approach, the multidimensional extension is even more delicate, since we have to

consider cross derivative terms that appear in the second and higher order terms, which are left uncon-

trolled if one applies a direction by direction TVD correction to a Lax–Wendroff unsplit scheme. A Locally
Extremum Diminishing scheme can be obtained if one discretizes the mixed terms using upwind formulae,

but it is very difficult to implement and our preliminary numerical experiments in this way did not give good

results. The simplest way to avoid the problem of cross derivatives and to recover the good properties of the

1D scheme is to use a Strang directional splitting strategy, which is only second-order accurate. In two

dimensions, the Euler system is written:
ow
ot

þ of ðwÞ
ox

þ ogðwÞ
oy

¼ 0; ð72Þ
where f and g are the fluxes in each direction. We implement the splitting as follows:
wnþ2
j ¼ LdxLdyLdyLdxwn

j ; ð73Þ
where Ldx (resp. Ldy) being a discrete approximation of LxðwÞ ¼ �f ðwÞx (resp. LyðwÞ ¼ �gðwÞy). In such a

way, the second-order accuracy is recovered every two time steps.
4. Numerical results

4.1. The 1D scalar case

4.1.1. A convergence study for a smooth initial profile

We solve the advection Eq. (1) on the domain ½�1; 1� with initial condition u0ðxÞ ¼ sin4ðpxÞ and periodic

boundary conditions. The computed L1 error and order of accuracy are listed in Table 1 (the CFL number

is equal to 0.5). The results for the OSTVD7 scheme show that the TVD constraints lower the order of

accuracy to around 2.5. We note that the OSMP7 scheme equipped with djþ1=2 ¼ dMM
jþ1=2 gives the same

results as the OS7 scheme, and that both schemes reach the theoretical seventh order of accuracy. The use

of djþ1=2 ¼ dM4
jþ1=2 has the effect of lowering the order for the finest meshes. Compared to the results given in

[2] for this test case, the OSMP7 scheme has errors at least one order of magnitude lower than the

MPWENO5 scheme.

4.1.2. Advection of an initial profile with discontinuities

We now consider the classical test case of the advection of an initial profile composed of a Gaussian

wave, a square wave, a triangular wave and an ellipse. This is a difficult test case because it includes dis-

continuities as well as smooth portions of curves and extrema. The initial condition u0ðxÞ is defined on the

interval x 2 ½�1; 1� as:



Table 1

Advection of the initial condition u0ðxÞ ¼ sin4ðpxÞ: L1 error and order of accuracy for the one-step schemes

Method Number of grid points L1 error L1 order

OS7 20 5.16494� 10�3

OSMP7 40 5.66989� 10�5 6.51

djþ1=2 ¼ dMM
jþ1=2 80 4.74407� 10�7 6.90

160 3.76700� 10�9 6.98

320 2.95501� 10�11 6.99

OSMP7 20 5.08530� 10�3

djþ1=2 ¼ dM4
jþ1=2 40 5.67752� 10�5 6.48

80 6.84954� 10�7 6.37

160 2.19588� 10�8 4.96

320 1.33241� 10�9 4.04

OSTVD7 20 2.13730� 10�2

40 3.85456� 10�3 2.47

80 7.78303� 10�4 2.31

160 1.47891� 10�4 2.40

320 2.73871� 10�5 2.43
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u0ðxÞ ¼ expð� logð2Þðxþ 0:7Þ2=0:0009Þ if � 0:86 x6 � 0:6;
u0ðxÞ ¼ 1 if � 0:46 x6 � 0:2;
u0ðxÞ ¼ 1� j10ðx� 0:1Þj if 06 x6 0:2;

u0ðxÞ ¼ ð1� 100ðx� 0:5Þ2Þ1=2 if 0:46 x6 0:6;
u0ðxÞ ¼ 0 otherwise

8>>>><
>>>>:

ð74Þ

and periodic boundary conditions are prescribed. We use a uniform grid composed of 200 mesh-cells. The

solutions obtained at two dimensionless times t ¼ 20 (10 periods) and t ¼ 100 (50 periods) are shown in

Figs. 1–5. Let us emphasize that this corresponds to long time integration, as usually only 10 periods are

presented for this test case.

Among the schemes described above, we present the results obtained using three of them (and their TVD
and monotonicity-preserving variants): the one-step seventh-order scheme (named OS7), and the multistage

RK3 scheme associated with a fifth order (RK3/5) and a seventh order (RK3/7) in space discretization. We

will denote by OSTVD7 and OSMP7, respectively, the TVD and monotonicity-preserving variants of the

OS7 scheme. We will also denote by RK3/TVD5(a) (respectively RK3/TVD7(a)) the TVD versions of the

multistage schemes, and by RK3/MP5(a) (respectively RK3/MP7(a)) their MP versions; here the notation

(a) is relative to the coefficient of the limited function WTVD
a . For comparison, we have also performed a

calculation using a RK3/WENO(r ¼ 5) [10] scheme.

Let us first compare the CPU times needed for each scheme to compute 20,000 time steps, it takes: 22.83
s using the OS7 scheme, 25.31 s for the OSTVD7 scheme, 33.77 s for the OSMP7 scheme, 39.37 s for the

RK3/TVD5 scheme and 46.23 s for the RK3/TVD7 scheme. This means that it takes nearly twice the time

to get a seventh order in space approximation using a multistage scheme compared to a one-step scheme

(and a larger stencil is necessary).

Fig. 1 shows the results obtained for the three versions of the one step seventh-order scheme and the

RK3/WENO5 scheme, using a CFL number equal to 0.1. The OS7 gives very good results, except for

numerical oscillations in the discontinuous regions. The TVD correction does a very good job of elimi-

nating these oscillations, but tends to smooth extrema, although this is very localized. The MP correction
is almost perfect, keeping the properties of the TVD correction while leaving unchanged the extrema

compared to the original scheme. The discontinuities are represented over six points, which is rather low
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(OSTVD7) and MP (OSMP7) schemes, a RK3/WENO5 scheme. All the schemes are used with CFL¼ 0.1.
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after 20,000 time iterations. The same conclusions can be made after 50 periods (Fig. 2). The disconti-

nuities are a little more smeared (eight points), and one can notice a small staircasing effect around the

corners which is due to diffusive effects at low CFL numbers. But the solution can still be considered of

excellent quality. The quality of the results given by the OSMP7 scheme is even better at higher CFL

number as shown in Fig. 3 for CFL¼ 0.5. If we now compare these results with those given by the RK3/

WENO5 scheme, it is apparent that, while the WENO scheme is very successful in representing extrema

(sometimes without control as can be seen in Fig. 1), it is more diffusive around discontinuities and tends
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to round the corners. One can also remark that the error of this scheme increases with the CFL number

(Fig. 3), unlike the OS7 scheme.

Let us now compare these results with those obtained using the RK3/TVD and MP schemes. Figs. 4 and

5 show the numerical solution after 50 periods given by the RK3/TVD5 and TVD7 schemes, using the two

values a ¼ 4 and a ¼ 9. For the case a ¼ 4, the scheme will be TVD provided that m6 0:2. In fact, as can be

seen on the results, this CFL constraint is too restrictive, as it does not take into account the dissipation

added by the temporal scheme. The results are better using CFL¼ 0.4 than CFL¼ 0.1, which means that
the errors of the spatial and temporal scheme compensate for CFL¼ 0.4, while the total dissipative error is
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too large if the scheme is step by step TVD. More precisely, in the multistage approach the dissipation

added by the temporal scheme is not included in the derivation of the TVD or MP constraints. As a

consequence, the TVD/MP corrections will be switched on more often that would really be necessary,

contrary to what happens in the one-step approach. This phenomenon is accentuated when the spatial

order of the scheme is increased, as can be seen by comparing the fifth- and seventh-order results, showing

that the staircasing due to the dissipative error is greater in the seventh-order case. Let us also remark that it

is interesting to increase the value of a to improve the results (see the results using a ¼ 9), but this implies a
lowering of the CFL number (the scheme is TVD at each time step if m6 0:1 for a ¼ 9). Finally, Fig. 6

shows the results obtained by using the RK3/MP5 scheme. While these results are much better than the
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corresponding TVD results shown in Fig. 4, the same remark can be made for the role of the dissipative

temporal error.

In conclusion, among the schemes we compared, the one-step scheme gives the best results, at the lowest
cost. The control of the total truncation error allowed by the one step approach leads to the derivation of

optimal non-oscillatory conditions.

4.2. 1D Euler equations

4.2.1. Shock wave interacting with a density disturbance

In this test case, which was proposed in [21], a moving Mach 3 shock wave interacts with a sinusoidal

density profile. It is a difficult test case because it involves both a shock and smooth structures. The 1D
Euler equations are solved on the spatial domain x 2 ½0; 10�. The solution is initially prescribed as

q ¼ 3:857; u ¼ 2:629; p ¼ 10:3333 when x < 1;
q ¼ 1þ 0:2 sinð5xÞ; u ¼ 0; p ¼ 1 when xP 1:

�

The computation is stopped at a dimensional time t ¼ 1:8. Fig. 7 presents the results obtained by using

the three versions of the OS7 scheme (OS7, OSTVD7, OSMP7) and the RK3/WENO5 scheme [10], for 200
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grid cells. This is a very coarse grid in which classical TVD schemes retain almost none of the structures

immediately behind the shock wave. We can see here that the OSMP7 does a very good job, by eliminating

the spurious oscillations generated by the OS7 base scheme, while relaxing the TVD constraints where they
are not useful and ‘‘clip’’ the extrema. The OSMP7 results here are very close to those given by the RK3/

WENO5 scheme, which is very good for this test case.

In Fig. 8 are compared the results for the OSMP7 and RK3/WENO5 schemes using 400 grid cells.

One can conclude that both schemes have practically converged on this mesh, but at a lower cost for the

OSMP7 scheme which is about five–six times less expensive than the RK3/WENO5 scheme. To be more

precise, we have counted the number N of floating point operations needed per grid point and per time

iteration in each case. The results are the following: the value of N is 1641 for RK3/WENO3, 3725 for

RK3/WENO5, 541 for OSTVD7, 670 for OSMP7 and 354 for a one-step Van Leer second-order flux
limiter scheme. Each stage of the RK3/WENO5 scheme costs roughly twice a time iteration of the

OSTVD7 scheme. The added cost for the MP algorithm can be approximated by the difference

N(OSMP7))N(OSTVD7), so we can estimate a N-value close to 4100 for the RK3/MPWENO5 scheme,

six times that of the OSMP7 scheme.

Let us also present the results we obtained for a variant of this test case that is often considered in place

of the first one. The spatial domain is now the interval ½�1; 1� and the initial state is

q ¼ 3:857; u ¼ 2:629; p ¼ 10:3333 when x < �0:8;

q ¼ 1þ 0:2 sinð5pxÞ; u ¼ 0; p ¼ 1 when xP � 0:8:

�

The computation is stopped at a dimensional time t ¼ 0:47. A grid with 200 zones is used. This test case is

for example treated using a RK3/MPWENO5 scheme in [2]. We can compare this result in [2] (Fig. 4(a)) to

the OSMP7 result shown in Fig. 9, and conclude that they are quite similar. We also have shown in Fig. 9

the result given by a classical second-order TVD scheme equipped with a Van Leer limiter, in order to

highlight the increase of accuracy due to the OSMP7 scheme.

4.2.2. Lax shock tube

The previous test case is not very demanding of the robustness of the scheme, as the shock wave is rather

weak. This is not the case for Lax�s problem, which we have treated to highlight this point. The spatial

domain is ½0; 2� and the initial conditions are defined as:
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q ¼ 0:445; u ¼ 0:698; p ¼ 3:528 when x < 1;
q ¼ 0:5; u ¼ 0; p ¼ 0:571 when xP 1:

�

The results are shown in Fig. 10 at time 0.32, for the OSMP7 scheme and three RK3/WENO3/5/7

schemes. One can observe that the best results are given by the OSMP7 scheme, the WENO results being

more diffusive around the discontinuities or oscillatory for the WENO7. The MP strategy should give

good results here applied to the WENO scheme as was done in [2], but with a higher computational

effort.

4.3. 2D Euler and Navier–Stokes equations

4.3.1. Convergence study for a 2D Euler case

We consider the test case, treated in [2], of the propagation at 45� to the grid lines of a strong vortex at a

supersonic Mach number. The vortex is initially centered in a domain ½�5; 5� � ½�5; 5�. It is defined as a

fluctuation to an unperturbed flow with ðq; p; u; vÞ ¼ ð1; 1; 1; 1Þ, given by

ðdu; dvÞ ¼ �

2p
e0:5ð1�r2Þð�y; xÞ; dT ¼ �ðc� 1Þ�2

8cp2
eð1�r2Þ; dS ¼ 0;
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where r2 ¼ x2 þ y2, S ¼ p=qc is the entropy and T ¼ p=q is the temperature, c ¼ 1:4, � ¼ 5 is the vortex

strength. Periodic boundary conditions are imposed. The exact solution of this problem is just the passive

convection of the vortex. The errors are calculated at time t ¼ 10.

In Table 2 are listed the L1 and L1 errors, together with the L1 order of accuracy, obtained using the

OSMP7 with djþ1=2 ¼ dM4
jþ1=2. One can see that the scheme is only second-order accurate, due to the sim-

plified extension to the non-linear system case. Nevertheless, as we have seen in the 1D Euler case, the

quantitative values of the error are indeed much lower than for a classical second-order scheme. In Fig. 11
are represented the convergence curves associated with several schemes. The values for the WENO schemes

are taken from [2]. One can see that, although the WENO schemes keep a high order of accuracy even in the

2D non-linear system case, their level of error is higher when the mesh is coarse. This implies that the

OSMP7 scheme is more accurate than the WENO3 scheme for all the considered meshes. The MPWENO5

scheme has a lower error than the OSMP7 scheme for meshes finer than about 60� 60. Considering also the

lower cost of the OSMP7 scheme, this shows that it can be profitable to use the OSMP7 scheme, in cases

where it is not possible to use very fine meshes (which is a very standard case, for example in LES

calculations where all the length scales are not fully resolved). Using the argument developed in [2] that the
flow features should be simulated with at least 1% accuracy for the purpose of LES calculations, we can see
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Table 2

Transport of a strong vortex in supersonic flow: L1 error and order of accuracy, L1 error for the OSMP7 scheme

Method Number of grid points L1 error L1 order L1 error

OSMP7 25� 25 1.37� 10�3 1.67� 10�2

djþ1=2 ¼ dM4
jþ1=2 50� 50 3.13� 10�4 2.13 3.55� 10�3

75� 75 1.38� 10�4 2.02 1.66� 10�3

100� 100 7.73� 10�5 2.01 9.11� 10�4
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that the OSMP7 scheme achieves this level of error on the coarsest 25� 25 grid (all flow variables are of the

order of unity).
4.3.2. Double Mach reflection

This test case was solved using several numerical schemes for comparison in [28]. Solutions obtained

using very fine meshes can also be found in [6]. The domain has a dimension ½0; 4� � ½0; 1�. The problem

involves a Mach 10 shock wave in air (c ¼ 1:4), which initially makes a 60� angle with the horizontal
axis. The shock intersects the axis at x ¼ 1=6. The region from x ¼ 0 to x ¼ 1=6 is always assigned

the initial values. The region x 2 ½1=6; 4� is a reflecting wall. The exact solution is set up and driven at

the top of the domain. The computation stops at time 0.2. It is a difficult test case, involving both

strong shocks and multiple stems. A jet forms along the wall, which is also very difficult to compute

properly.

The results for this test case are shown in Fig. 12, where the density contours obtained using four grids

with increasing resolution are represented. One can remark that all the features of the flow are captured at

the correct position in the coarsest mesh. The shocks are very sharply captured, including the weak shock in
the secondary Mach stem. There are some small oscillations in the nearly stationary zone underneath the

curved shock wave, which is inherent to all schemes whose dissipation vanishes with zero flow velocity. If

we compare our results with those in [25], for the 240� 60 grid, we can conclude that they are very similar

except that the wall jet is better represented in our calculation, if we refer to the results obtained using the

finest grids.

As was pointed out in [2], this test case is difficult for schemes having Roe�s scheme as the underlying

first-order scheme. In fact, Roe�s scheme systematically produces a carbuncle-type effect around the point
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where the normal shock meets the wall. Curiously, this kind of problem was not encountered using the

OSMP7 scheme in all the meshes we considered, whereas we could not obtain a correct solution using the

WENO–Roe schemes in any grid (let us notice that we have added an entropy correction ([11]) to our OS
scheme, which has a favorable effect on the problem). In [2] the Lax–Friedrichs (LF) scheme was used

instead of Roe�s scheme in order to avoid the problem (it is well known that the LF scheme is not prone to

this phenomenon).
4.3.3. 2D viscous shock–vortex interaction

This test case, treated in [27], considers the viscous (Re ¼ 2000) interaction of a plane weak shock with a

single isentropic vortex. During the interaction, acoustic waves are produced, and we investigate the ability

of the numerical scheme to predict and transport these waves. As this is a viscous flow, the Navier–Stokes
equations are solved. In order to take the viscous terms easily into account, the one-step scheme is im-

plemented as a Mac Cormack scheme followed by a correction, as was done in [7]. The viscous terms are

discretized using centered second-order formulae.

The domain has a dimension ½0; 2L0� � ½0; 2L0�, where L0 is a reference length scale. The dimensionless

computational domain is ½0; 2� � ½0; 2�. A stationary plane shock is located at x ¼ 1. The prescribed pressure

jump through the shock is DP=P1 ¼ 0:4, where P1 is the static pressure at infinity, corresponding to a

reference Mach number M0 ¼ 1:1588. The reference density and velocity are those of the free uniform flow

at infinity. The Reynolds number, based on the reference length scale, density and velocity, is Re ¼ 2000.
An isolated Taylor vortex centered at x0 ¼ 1

2
, y0 ¼ 1 is initially superimposed on the base flow. The tan-

gential velocity in the vortex is given by:

VhðrÞ ¼ C1r � e�C2r2 ð75Þ

with

C1 ¼
Uc

rc
; C2 ¼

1

2r2c
; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy � y0Þ2

q
:

The calculations were performed for rc ¼ 0:075 and Uc ¼ 0:25. Periodic boundary conditions are applied in

the y direction. The computations stopped at a dimensionless time t ¼ 0:7.
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The pressure field contours obtained by using the OSMP7, RK3/WENO5 and RK3/WENO7 schemes

are shown in Fig. 13, using 200� 200 grid cells and 50� 50 grid cells. One can notice the OSMP7 result is

quite accurate even on a coarse grid and comparable to the WENO7 result. Curiously, the WENO5 scheme
exhibits a slightly oscillatory behavior, which is not found in the WENO7 results. This can be seen more

precisely on the pressure distribution along the line y ¼ 1 (Fig. 14), which shows the high accuracy of the

OSMP7 scheme in capturing the acoustic wave even on the coarsest grid. For this problem, the WENO5

scheme is seen to be insufficiently accurate on the coarse grid.
5. Conclusion

For the numerical simulation of unsteady compressible flows, we developed accurate numerical schemes

based on a coupled time–space approach, which offer a compromise between high accuracy in smooth

regions and an efficient shock capturing technique. We have shown that a coupled time and space approach

for the solution of hyperbolic equations provides a very competitive numerical method compared to the

state-of-the-art high resolution schemes (WENO, Runge–Kutta MP schemes). In the scalar case, a seventh-

order accurate in time and space one-step scheme has been derived. When combined with MP conditions,

the scheme has been shown to give very high quality results for long time integration. The MP conditions

have then been extended from ([25]) to the case of a one-step scheme, and reinterpreted as TVD-like
conditions in a flux limiting approach.

The extension of the one-step MP scheme to Euler and Navier–Stokes equations has been performed by

using local linearization and dimensional splitting in the multidimensional case. Although this approach

does not preserve the formal high order of accuracy of the scheme, it is shown to give very accurate results

which compare well to high order WENO schemes, at a lower cost.

The investigated MP one-step schemes yield accurate results for the selected relevant test cases. How-

ever, one of the classical drawbacks associated with dimensional splitting is related to the treatment of

boundary conditions for the intermediate step for bounded viscous flow calculations. This point is currently
under investigation.
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